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The computer model developed for calculating pressure #uctuations inside an automotive
fuel injector (Hu et al. Journal of Sound and <ibration (submitted)) is extended to the entire
fuel rail system, which consists of six injectors, a pressure regulator, pressure damper, fuel
pump, and torturous fuel supply and return lines. Since the pressure #uctuations generated
inside any injector can propagate throughout the entire fuel rail system, the responses of all
injectors are coupled. The presence of a pressure regulator may also a!ect the dynamic
responses of the fuel rail system. In Part II of this paper, formulations for describing pressure
#uctuations inside the injectors, pressure regulator, and fuel rails are derived and solved
simultaneously. The e!ect of twists and turns of the fuel lines on the losses of #uid kinetic
energy, and that of wave propagation throughout the fuel rail system are taken into account.
The computer model thus developed is validated experimentally. Measurements are
conducted on a test bench that simulates a real engine with injectors "red in a particular
order. The calculated pressure #uctuations inside di!erent injectors and fuel lines are
compared with the measured data under various working conditions. Favorable agreements
are obtained in all cases.
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1. INTRODUCTION

In Part I of this paper, the authors [1] developed a computer model for predicting pressure
#uctuations inside an automotive fuel injector. There the injector was divided into three
segments with a "lter at the top, a coil spring and needle assembly in the middle, and ori"ces
at the bottom. The fuel #owing through these segments was assumed to be unsteady,
viscous, and one-dimensional. The losses of #uid kinetic energy as the #uid enters the "lter
at the top and discharges through ori"ces at the bottom of the injector were described by
two loss factors. The former was determined experimentally while the latter was correlated
to the motion of the solenoid and needle assembly, which was governed by a second order
ordinary di!erential equation (ODE). Moreover, the pressure #uctuations were required to
satisfy a one-dimensional damped wave equation. The dynamic responses of an injector
were subsequently determined by solving a set of nine simultaneous equations.

In Part II of this paper, we extend these formulations to the entire automotive fuel rail
system, which consists of six injectors, a pressure regulator, fuel pump, and inlet and outlet
22-460X/01/350815#20 $35.00/0 ( 2001 Academic Press
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fuel lines with twists and turns. The injectors are "red in a particular order synchronizing
with the engine speed. Since the pressure #uctuations induced by opening and closing the
solenoid and needle assembly inside any injector may propagate throughout the entire fuel
rail, the responses of all injectors are coupled together. The presence of a pressure regulator
may also in#uence the dynamic responses of a fuel rail system. The major component of
a pressure regulator is the spring}diaphragm}ball assembly that reacts to the pressures
acting on the diaphragm. When the incoming pressure exceeds that of the coil spring, the
diaphragm is pushed up to allow for more #uid #ow. As the #ow velocity increases, the
incoming pressure drops and the coil spring pushes the diaphragm back. Consequently,
the #uid pressure inside the fuel rail is maintained at a constant level. The twists and turns of
the fuel supply and return lines also have a direct impact on the resulting responses of the
system. These e!ects are all considered in Part II of this paper.

2. MODELLING OF FUEL RAILS AND INJECTORS

The #ow "eld inside an automotive fuel rail system is much more complex than that
inside an injector. Figure 1 shows a typical fuel rail system, which includes six injectors and
a pressure regulator connected by torturous fuel lines. Because the injectors are connected
in series, pressure #uctuations generated inside one injector may propagate throughout the
entire fuel rail and in#uence the responses of others. The #ow "elds are further complicated
by sharp twists and turns of the fuel lines, which may have a direct impact on the losses of
Figure 1. An automotive fuel rail system containing six injectors, pressure regulator, and torturous fuel lines.



Figure 2. Schematic of the automotive fuel rail system under consideration.
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#uid kinetic energy. To account for these coupling and wave propagation e!ects, it is
necessary to consider the whole fuel rail system and solve the dynamic responses of all
injectors and pressure regulator simultaneously.

Figure 2 illustrates a schematic of the fuel rail system under consideration. The injectors
are numbered 1}6 in sequence so as to facilitate a shorthand notation of mathematical
formulations. This numbering system may be di!erent from the conventional one, favored
by the practicing engineers, which usually indicates a speci"c engine "ring order. Under the
present numbering system, the fuel discharged from the pump #ows through injectors 1}6 in
sequence and then passes the pressure regulator to the fuel return line.

To facilitate numerical computations, the fuel lines are discretized into segments de"ned
as follows. The segment connecting the fuel pump and inlet is termed as line 0, that
connecting the inlet to the "rst injector as line 1, those between injectors (i!1) and i as line
i, i"2}6, that between the sixth injector and pressure regulator as line 7, and that
connecting the pressure regulator to the fuel return as line 8. To account for the losses of
#uid kinetic energy through each of the line segments, loss factors are introduced and
indexed in the same manner as those of the line segments. Note that all line segments are
assumed straight as shown in Figure 2. The losses of #uid kinetic energy due to twists and
turns of the fuel line are accounted for by the loss factors based on the notion of an
equivalent length of a straight-line segment [2].

The injectors connected in series are modelled in a similar manner as those of a single
injector [1]. Assume that the #uid is homogeneous and incompressible and that fuel #owing
through each line segment is unsteady and one-dimensional. Then we can describe the
pressures and velocities in all components of the fuel rail system as [3, 4]
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where P
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represents the input pressure from the fuel pump; P
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are the pressure
and #ow velocity at the fuel return lines; P
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stand for the pressures, #ow velocities, and loss factors at
the entrance, turning section, and exit of the regulator, respectively; and o is the #uid
density.

Attached to the ends of line segments 1}6 are six injectors. The #ow "elds inside these
injectors can be described by the following equations [1]:
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where n"1}6, P
n,T

and P
n,B

represent the pressures at the top and the bottom sections of the
nth injector, respectively;<

n,T
and<

n,B
are the #ow velocities at the corresponding locations;

K
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are the loss factors for the dynamic pressure head as #uid enters the injector
through the "lter at the top and discharges into the cylinder chamber through four ori"ces
at the bottom of the injector, respectively; <

n,F
and <

n,O
are the #ow velocities at the

corresponding locations;<
v,an

is the average #ow velocity inside the nth injector; and h is the
length of the injector.

Since the "lters inside injectors are "xed, the loss factors K
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can be assumed constant.
Their values can be determined by measuring the pressures and volume #ows through the
"lters, given the cross-sectional areas of the injectors [1]. The loss factors K
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where D
n

is the diameter of the bottom section inside the nth injector and x
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satis"es the
equation of motion
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where m
n
and k

n
represent the lumped mass and spring constant of the needle for the nth

injector, respectively; and f
n,p

and f
n,m

are the corresponding spring pre-loading and
magnetic forces acting on the needle respectively. The value of f

n,p
is usually speci"ed and

that of f
n,m

can be approximated by an empirical formula [1].



Figure 3. Cross-sectional view of a pressure regulator.
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3. MODELLING OF PRESSURE REGULATOR

The major component of a pressure regulator is the spring}diaphragm}ball assembly
that reacts to the pressures acting on both sides of the diaphragm. Figure 3 shows
a cross-section of an assembled pressure regulator. Figure 4 depicts a schematic of
a regulator to illustrate the force balance of the spring}diaphragm}ball assembly. Here the
ball at the center is represented by a sphere of mass m

ball
. The e!ective displacement of the

ball is indicated by x
ball

. The e!ective spring constant acting on the ball is k
eff

"k
c
#k

m
,

which is the sum of contributions from a coil spring k
c
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m
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respectively (see Figure 4). When the pressure of the inlet #ow P
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is larger than
that of the spring, the diaphragm is pushed upwards, allowing more #uid to pass through
with pressure P

reg,ext
and velocity <

reg,ext
. As the #ow velocity increases, the inlet pressure

P
reg,ent

decreases so the coil spring pushes the diaphragm back until the forces on both sides
of the diaphragm are balanced.



Figure 4. Schematic of the pressure regulator under consideration.
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In modelling the responses of a pressure regulator, we divide the #ow "eld into three
regions: upstream, downstream, and turning point around the spring}diaphragm}ball
assembly. According to Bernoulli's equation [3] with consideration of the loss of kinetic
energy [4], the equations governing pressures and velocities in these regions can be written
as
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where P
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, <
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, P
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, and <
reg,down

are the pressures and #ow velocities in the
upstream and downstream regions, respectively; P

reg,tur
, and<
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are the pressure and #ow

velocity at the turning point around the spring}diaphragm}ball assembly, respectively; and
K
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account for the losses of #uid kinetic energy as the #uid enters the
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regulator and passes the turning point, respectively, which are given by
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where c"A
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is the ratio of the cross-sectional area of #ow passage to that of the
ring bounded by R

2
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1
. The value of c is constant for a given pressure regulator. The
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where c
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are the e!ective viscous damping coe$cient and sti!ness of the
assembly, f

pr
is the spring pre-loading force acting on the ball, and A@

up
and A@

tur
are given by

A@
up
"n (r@2

3
!r@2

2
), A@

tur
"n(r@2

2
!r2

1
). (9a, b)

Since the diaphragm and the coil spring undergo the same amount of displacement when
the spring}diaphragm}ball assembly is pushed upwards, the e!ective spring constant k

eff
in

equation (8) can be written as

k
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The value of k
c
can be determined experimentally by measuring the linear deformations D of

the spring under di!erent weights=. The slope of this line is the spring constant, k
c
"=/D.

The sti!ness of the diaphragm k
m

is much more di$cult to determine than that of the coil
spring k

c
. This is because the diaphragm is made of composite materials. The rate of change

in Young's modulus (slope) of the reinforcing fabric material is not only non-linear, but also
di!erent in both warp and woof directions with respect to the deformations of the material.
Test results show that when the deformations are small, for example within 2 per cent in
either warp or woof direction, the rate of change in Young's modulus is constant. When the
deformations exceed 2 per cent, the slopes of Young's moduli decrease with the increase of
the deformations of the reinforcing fabric materials in both directions. At around 10 per
cent of the deformations, the slopes of Young's moduli start to increase, and gradually
approach constant values again at very large deformations.



Figure 5. Linearization of the resultant sti!ness of the diaphragm inside the pressure regulator:==, measured;
}} }, simulated.
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In this investigation, we assume that the deformation of the diaphragm remains small
(less than 2 per cent) at all times, so that the resultant stress}strain relation of the diaphragm
can be linearized (see Figure 5). Under this condition, we can use an empirical formula to
estimate the spring constant for a diaphragm with clamped}lumped mass boundary
conditions [5]:

k
m
"

d3E

ia2
, (11)

where E and d are the resultant Young's modulus and thickness of the diaphragm,
respectively; i is a constant depending upon the ratio of the radius of the diaphragm a and
the width of the lumped mass b. For the pressure regulator under consideration, the ratio
a/b"1)326. Therefore i"0)00284 [5].

The exact value of the e!ective viscous damping coe$cient c
eff

for the
spring}diaphragm}ball assembly is unknown. However, numerical results indicate that the
response of the pressure regulator is relatively insensitive to c

eff
. Hence we set c

eff
"10

(Ns/m) for the sake of convenience. In numerical computations, the dimensions of
a pressure regulator must be speci"ed. Table 1 lists typical dimensions and relevant
constants for the pressure regulator under consideration as the input to the computer
model.

4. CONSERVATION OF MASS

The #uid #owing through a fuel rail system must satisfy the conservation of mass law [6].
Applying this law to each individual line segment, injector, and pressure regulator (see
Figures 2 and 4), we obtain
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TABLE 1

Input data for the pressure regulator under consideration

Parameters Descriptions

R
1

Radius (see Figure 3)
R

2
Radius (see Figure 3)

r
1

Radius (see Figure 3)
r
2

Radius (see Figure 3)
r
3

Radius (see Figure 3)
r@
2

Radius (see Figure 3)
r@
3

Radius (see Figure 3)
c Flow passage cross-sectional area ratio
m

ball
Mass of the ball

f
pr

Pre-loading spring force acting on the ball
a Radius of the diaphragm
b Width of the lumped mass
d Thickness of the diaphragm
k
c

Spring constant acting on the ball

TABLE 2

Input of the fuel line segments and the corresponding cross-sectional areas

Parameters Descriptions

l
0

Length of fuel line segment connecting pump and inlet
l
1

Length of fuel line segment between inlet and "rst injector
l
2

Length of fuel line segment between "rst and second injector
l
3

Length of fuel line segment between second and third injector
l
4

Length of fuel line segment between third and fourth injector
l
5

Length of fuel line segment between fourth and "fth injector
l
6

Length of fuel line segment between "fth and sixth injector
l
7

Length of fuel line segment between sixth and regulator
l
8

Length of fuel line segment between regulator and outlet
S
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Cross-sectional area of the fuel line segment l
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Cross-sectional area of the fuel line segment l
1
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Cross-sectional area of the fuel line segment l
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Cross-sectional area of the fuel line segment l
3
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Cross-sectional area of the fuel line segment l
4

S
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Cross-sectional area of the fuel line segment l
5

S
6

Cross-sectional area of the fuel line segment l
6

S
7

Cross-sectional area of the fuel line segment l
7

S
8

Cross-sectional area of the fuel line segment l
8
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Figure 6. Measurement set-up of the fuel rail system on a test bench simulating a full-size vehicle.
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where S
n
, n"0, 1,2 , 8 are the cross-sectional areas of the nth segment of the line segment;

<
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are the corresponding #ow velocities at the beginning of the nth line segment; A
n,F
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, and A
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are the cross-sectional areas at the entrance, top and bottom sections,

and ori"ces of the nth injector, respectively; A
ent

, A
up

, A
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, A
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, and A
ext

are the
cross-sectional areas at the entrance, upstream, turning point, downstream, and exit of the
pressure regulator respectively. The average #ow velocity inside the nth injector is given by
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where A
n,av

is the average cross-sectional area of the nth injector.
Note that in this case the injectors are identical. Therefore, they have the same needle

mass m and spring constant k, and subject to the same magnitudes of excitation forces f
p
and

f
mn

. However, they are located at di!erent locations along the fuel rail system under
a particular "ring order. Consequently, the coupling e!ect on each individual injector may
be di!erent. For example, the coupling of all injectors on the "rst injector may be di!erent
from that on the second one.

5. EFFECT OF WAVE PROPAGATION

The pressure #uctuations generated inside any injector can propagate throughout the
entire fuel rail and a!ect the responses of other injectors. The propagation of these pressure
#uctuations can be described by a damped wave equation, obtained by applying the
Navier}Stokes equation [7] to the one-dimensional laminar #ow of a Newtonian #uid,
using the conservation of mass or continuity equation [8] and the thermodynamic



Figure 7. Comparison of pressure #uctuations inside the second injector with the second injector open only:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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equation [9], and neglecting the high order term

L2P
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!
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, (14)

where P represents pressure #uctuations; t the time; y the co-ordinate in the #ow direction;
c the sound speed in the #uid; and l the kinematic viscosity. Equation (14) governs the
pressure #uctuations inside all injectors, pressure regulator, and line segments of the fuel rail
system under consideration. These pressure #uctuations are correlated to #ow velocities by



Figure 8. Comparison of pressure #uctuations inside the fuel line segment 2 with the second injector open only:
==, measured; } }}, calculated.
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a linearized momentum equation [1]

L<
Ly

"!

1

oc2

LP

Lt
. (15)

Equations (1)}(15) completely de"ne the responses of the fuel injection system under
consideration. These equations are solved simultaneously. In particular, the wave equation
(14) is solved by using a "nite (backward) di!erence method [8], with pressure boundary
conditions speci"ed at the fuel pump P

pump
, and all the return fuel line segments P

out
(see

Figure 2). An iterative scheme is used to limit the numerical computation errors to
a pre-determined level at each time step. Table 2 lists the input variables for the fuel rail
system under consideration.

6. TEST SET-UP

Figure 6 shows the measurement set-up on a test bench simulating the fuel rail system of
a full-size vehicle. This set-up consisted of six injectors connected in series, pressure
regulator, injector power supply and controller, fuel pump, supply, and return lines. The
controller was used to control the "ring order and pulse width, namely, the opening and
closing times inside each injector. In this investigation, the fuel injection system was "red in
the order of 3-6-1-5-2-4 in accordance with the numbering system adopted in this paper,
which may be di!erent from the actual "ring order because a di!erent numbering system
may be used. The pulse width for each injector was kept the same at 2)5 ms. The test #uid
was n-Heptane, which has the same density and viscosity as those of gasoline, but provides
greater stability.

To monitor the pressure #uctuations at various locations of the fuel injection system,
several Kulite XT-123C-100 pressure transducers were mounted on the top and bottom



Figure 9. Comparison of pressure #uctuations inside the third injector with the fourth injector open only:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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sections of various injectors and on the fuel line (see Figure 2). The sampling rate of the
measurements was set at 24 kHz. The measured pressure #uctuations were digitized and
recorded automatically in a desktop computer for post-processing.

7. RESULTS AND DISCUSSIONS

In this section, we demonstrate comparisons of the calculated and measured pressure
#uctuations inside the injections and fuel line. In carrying out numerical computations of
wave propagation inside the fuel rail system, each line segment was uniformly discretized



Figure 10. Comparison of pressure #uctuations inside the fuel line segment 2 with the fourth injector open only:
==, measured; } }}, calculated.
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into "ve nodes and each injector into nine nodes. Pressure #uctuations at these nodes were
calculated using a "nite di!erence method together with an iteration scheme. The values of
pressure #uctuations at these nodes that correspond to the pressure transducers' locations
were compared with the measured data.

In this study, "ve sets of measurements were taken. In the "rst set, the pressure
transducers were installed at the top and bottom sections of the second injector with the
second injector being "red. Next, the pressure transducers were moved to the top and
bottom sections of the third injector with the fourth injector being "red. This sequence of
measurements was then reversed, with the transducers moved to the top and bottom
sections of the fourth injector with the third injector being "red. In the last two sets of
measurements, pressure #uctuations were measured at the top and bottom sections of the
third and second injectors with the sixth and "fth injectors being "red separately
respectively. In all these measurements, pressure #uctuations were measured inside the fuel
line segment 2 while di!erent injectors were "red separately.

Figure 7 illustrates comparisons of the calculated and measured pressure #uctuations at
the bottom and top sections of the second injector with the second injector being "red
respectively. Results depict that when the injector is suddenly opened, the pressure
experiences an instant drop due to the rarefaction e!ect. This rarefaction is followed by
rapid oscillations whose amplitudes decay exponentially to the ambient level as the injector
remains open. When the injector is closed, a pressure surge is generated due to compression,
which is known as the &&water hammer'' phenomenon. The amplitude of the pressure surge
decays gradually in an oscillatory manner to the ambient level while the injector remains
closed. Results show that the amplitude of pressure surge or drop can be twice as high (or
low) as that of the ambient pressure. Hence they are the major causes of metering errors and
fuel injection system vibration and noise problems.

Unlike the case of a single injector, the pressures continue to oscillate around its ambient
level at a very low frequency after the injector is closed. This phenomenon is caused by the
re#ections of pressure waves propagating back and forth inside the fuel rail.



Figure 11. Comparison of pressure #uctuations inside the fourth injector with the third injector open only:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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Figure 7 shows that the present computer model is capable of capturing the main
characteristics of a fuel injection system. In particular, the agreement between the calculated
and measured pressure surge at the bottom section when the injector is just closed in almost
perfect. However, the calculated amplitude of the pressure drop when the injector is opened
is overestimated by 10 per cent. Also, the amplitudes of pressure #uctuations following the
pressure drop are overestimated as compared to the measured values. Nonetheless, the
trend of pressure #uctuations after the injector is closed agrees well with the measured data.
The amplitudes of the calculated pressure #uctuations at the top section of the second
injector are overestimated by 10 per cent as compared with the measured data. The reasons



Figure 12. Comparison of pressure #uctuations inside the fuel line segment 2 with the third injector open only:
==, measured; } }}, calculated.
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for these discrepancies could be: (1) the locations of the calculated pressure #uctuations may
not coincide exactly with those of measurements; (2) the performance of pressure
transducers deteriorates at high frequencies, which is why the measured pressures show less
oscillations than the calculated values; and (3) the sampling rate of measurements may not
be set high enough. As a result, the measured data between 0)1755 and 0)1770 ms seem more
like noise than true pressure oscillations.

Figure 8 illustrates the comparison of the calculated and measured pressure #uctuations
inside the fuel line segment 2 as the second injector is "red. Here again, discrepancies
between the calculated and measured pressure #uctuations are observed after the injector is
opened. The general trend of pressure #uctuations after the injector is closed, however, is
captured.

Next, we show comparisons of the calculated and measured pressure #uctuations at the
bottom and top sections of the third injector with the fourth injector being "red (see
Figure 9). The responses in this case are quite di!erent from those of Figure 7. Here we see
only smooth oscillations consisting of high- and low-frequency components. These pressure
#uctuations can be attributed to the coupling e!ect. The high-frequency components are
caused by the rapid oscillations after the opening and closing of a neighboring injector,
while the low-frequency components are due to re#ections of the rarefaction and
compression waves generated by sudden opening and closing of a neighboring injector from
the fuel rail system. The corresponding comparison of pressure #uctuations inside the fuel
line segment 2 is shown in Figure 10.

The comparisons of pressure #uctuations at the bottom and top sections of the fourth
injector as well as inside the fuel line segment 2 with the third injector being "red are
displayed in Figures 11 and 12. The characteristics of these pressure #uctuations are
quite similar to those of Figures 9 and 10 as expected. This reciprocity phenomenon holds
when the mean #ow speed is zero or very low, which is the case when the injectors are
closed.



Figure 13. Comparison of pressure #uctuations inside the third injector with the sixth injector open only:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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Finally, we illustrate comparisons of the calculated and measured pressure #uctuations at
the bottom and top sections of the third injector with the sixth injector being "red, and
those at the bottom and top sections of the second injector with the "fth injector being "red
respectively (see Figures 13 and 15). The corresponding comparisons of pressure
#uctuations inside the fuel line segment 2 with the sixth and "fth injectors being "red
separately are shown in Figures 14 and 16 respectively.

Note that once the pressure #uctuations are obtained, the #ow rate and metering errors
through each injector can be calculated. However, because of the di$culties involved in
accurately measuring the #ow metering errors, such comparisons cannot be made.



Figure 14. Comparison of pressure #uctuations inside the fuel line segment 2 with the sixth injector open only:
==, measured; } }}, calculated.
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8. CONCLUDING REMARKS

A computer model is developed for predicting the dynamic responses of an automotive
fuel rail system. In this model, the e!ects of coupling among the injectors and pressure
regulator and those of wave propagation inside the fuel rail system are taken into account.
Also, the losses of #uid kinetic energy due to sharp twists and turns of the fuel rail, and those
due to the solenoid}needle assembly inside an injector and the spring}diaphragm}ball
assembly inside a pressure regulator are considered. The calculated pressure #uctuations
inside various injectors and fuel lines are validated experimentally on a test bench that
simulates the working conditions of a full}size vehicle. Satisfactory agreements between the
calculated and measured pressure #uctuations as the injectors are opened and closed
periodically are obtained. Discrepancies between the calculated and measured pressure
#uctuations are observed when the injectors remain open. The measured quantities during
these times seem more like noise than true pressure #uctuations. This could be due to the
deterioration of the pressure transducers' performance in the high-frequency regime or to
the fact that the sampling rate of measurements is not high enough.
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Figure 15. Comparison of pressure #uctuations inside the second injector with the "fth injector open only:
(a) bottom; (b) top; ==, measured; } } }, calculated.
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Figure 16. Comparison of pressure #uctuations inside the fuel line segment 2 with the "fth injector open only:
==, measured; } }}, calculated.
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